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Abstract. We prove the quantum ergodicity for Eisenstein series for PSL(2, OK),

where OK is the integer ring of an imaginary quadratic field K of class number one.

1. Introduction. We first explain the whole picture around the two fields, number

theory and quantum chaos. Number theorists study the theory of zeta functions,

where one of their chief concerns is to estimate the size of zeta functions such as

|ζ( 1
2 + it)| along the critical line. A trivial estimate can be obtained from the con-

vexity principle in the general theory of complex functions. We call it the convexity

bound. Any estimate breaking the convexity bound is called a subconvexity bound.

To obtain any subconvexity estimate is significant in number theory.

On the other hand in quantum mechanics or spectral geometry, there is a field

called quantum chaos, where they study various problems as λ → ∞, where λ is

an eigenvalue of some self-adjoint operator ∆. Typically ∆ is the Laplacian on

L2(X) with X a Riemannian manifold. In such settings one of their interests is the

asymptotic behavior of the eigenfunctions φλ. Quantum ergodicity means that they

become equidistributed as λ →∞. We call φλ the Maass cusp form, especiall when

X is an arithmetic manifold. If X is noncompact, there also appear continuous

spectra, and we also regard φλ as the real analytic Eisenstein series. Maass cusp

forms and Eisenstein series are central objects in number theory. In this manner

quantum chaos presents a new aspect to number theory, as well as number theory
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gives good examples, strong tools and methods to the theory of quantum chaos.

One of remarkable facts connecting these two areas is the equivalence of sub-

convexity and quantum ergodicity. More precisely, the quantum ergodicity of real

analytic Eisenstein series is equivalent to a subconvexity of the automorphic L-

function for Maass cusp forms for the arithmetic manifold. This equivalence was

discovered by Luo and Sarnak [LS] for PSL(2,Z). The main theorem in this arti-

cle is its generalization to PSL(2, O) where O is the integer ring of an imaginary

quadratic field.

In the case of PSL(2,Z), a subconvexity bound is obtained by Meurman [M].

It has been considered to be a hard problem to generalize it to higher dimensional

cases, but Sarnak and Petridis [SP] recently did it successfully. By using their

remarkable result, the quantum ergodicity is proved for three dimensional cases.

In what follows we will describe more precisely.

Luo and Sarnak [LS] proved the quantum ergodicity of Eisenstein series for

PSL(2,Z). It is stated as follows:

Theorem 1.1. Let A, B be compact Jordan measurable subsets of PSL(2,Z)\H2,

then

lim
t→∞

µt(A)
µt(B)

=
Vol(A)
Vol(B)

,

where µt = |E(z, 1
2 +it)|2dV with E(z, s) being the Eisenstein series for PSL(2,Z),

and dV is the volume element of the upper half plane H2.

In this paper we will generalize Theorem 1.1 to three dimensional cases

X = PSL(2, OK)\H3, where OK is the integer ring of an imaginary quadratic

field K of class number one, and H3 is the three dimensional upper half space. Our

main theorem is analogously described as follows:
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Theorem 1.2. Let A, B be compact Jordan measurable subsets of X, then

lim
t→∞

µt(A)
µt(B)

=
Vol(A)
Vol(B)

,

where µt = |E(v, 1+ it)|2dV with E(v, s) being the Eisenstein series for X, and dV

is the volume element of H3.

Indeed we show that as t →∞,

µt(A) ∼ 2Vol(A)
ζK(2)

log t,

where ζK(s) is the Dedekind zeta function.

In two dimensional cases numerical examples [HR] suggested that the quantum

ergodicity would hold. For higher dimensional cases no numerical examples are

known. Theorem 1.2 is the first result along this direction.

The author would like to express his thanks to Professor Peter Sarnak, who

introduced the author to the subject.

2. Three-Dimensional Settings. In this section we introduce some notation on

the three-dimensional hyperbolic space.

A point in the hyperbolic three-dimensional space H3 is denoted by v = z + yj,

z = x1+x2i ∈ C, y > 0. We fix an imaginary quadratic field K whose class number

is one. Denote its discriminant by DK and integer ring O = OK . Put D = |DK |.

We often regard O as a lattice in R2, which is denoted by L with the fundamental

domain FL ⊂ R2. Also put ω = ωK = D−1/2, the inverse different of K. The

group Γ = PSL(2, O) acts on H3 and the quotient space X = Γ\H3 is a three

dimensional arithmetic hyperbolic orbifold. The Laplacian on X is defined by

∆ = −y2

(
d2

dx2
1

+
d2

dx2
2

+
d2

dy2

)
+ y

d

dy
.
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It has a self-adjoint extension on L2(X). It is known that the spectra of ∆ is

composed of both discrete and continuous ones. The eigenfunction for a discrete

spectrum is called a cusp form. We denote it by φj(v) with eigenvalue λj (0 = λ0 <

λ1 ≤ λ2 ≤ · · · ). We put λj = 1 + r2
j . We shall assume the φj(v)’s to be chosen so

that they are eigenfunctions of the ring of Hecke operators and are L2-normalized.

The Fourier development of φj(v) is given in [S] (2.20):

φj(v) =
∑

n∈O∗/∼
ρj(n)yKirj

(2π|n|y)e(〈n, z〉), (2.1)

where n ∼ m means that they generate the same ideal in O, and 〈n, z〉 is the

standard inner product in R2 with Kν being the K-Bessel function.

For a Maass-Hecke cusp form φj(v) with its Fourier development given by (2.1),

we have the Rankin-Selberg convolution L-function L(s, φj × φj) and the second

symmetric power L-function L(2)(s, φj) which satisfy the following:

L(s, φj × φj) = ζK(2s)
∑

n∈O∗/∼

|λj(n)|2
N(n)s

L(2)(s, φj) =
∑

n∈O∗/∼

cj(n)
N(n)s

= ζK(s)−1L(s, φj × φj),

with ρj(n) =
√

sinh πrj

rj
vj(n), vj(n) = vj(1)λj(n) and cj(n) =

∑
l2k=n λj(k2). It is

known that the both functions converge in Re(s) > 1. The functional equation of

L(s, φj × φj) is inherited from the Eisenstein series by our unfolding the integral.

We compute that

∫

X

|φj(v)|2E(v, 2s)dv = |ρj(1)|2 L(s, φj × φj)
ζK(2s)

Γ(s + irj)Γ(s− irj)Γ(s)2

8π2sΓ(2s)

is invariant under changing the variable s to 1−s. We normalize such that ‖φj‖ = 1

with respect to the Petersson inner product

〈f, g〉 =
1

vol(X)

∫

X

f(v)g(v)dv.
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The residue Rj of L(s, φj × φj) at its unique simple pole s = 1 is equal to

8πζK(2)
|vj(1)|2 Ress=2E(v, s) =

8πζK(2)Vol(FL)
|vj(1)|2Vol(X)

, (2.2)

where Ress=2E(v, s) = Vol(FL)/Vol(X) is known by Sarnak [S] Lemma 2.15.

3. Proofs. In this section we prove Theorem 1.2. We first define the Eisenstein

series by

E(v, s) =
∑

Γ∞\Γ
y(γv)s, (3.1)

where y(v) = y for v = z + jy ∈ H3 and Re(s) > 2. Here the group Γ∞ is given by

Γ∞ =
{(

1 n
0 1

)
: n ∈ O

}
.

The Fourier development of E(v, s) is known by Asai [A] and Elstrodt et al. [E]:

E(v, s) = ys + y2−s ξK(s− 1)
ξK(s)

+
2

ξK(s)

∑

n∈O∗/∼
|n|s−1σ2(1−s)(n)e4πiRe(nωz)Ks−1(4π|nω|y)y, (3.2)

where σs(n) =
∑
d|n
|d|s and ξK(s) = (

√
D

2π )sΓ(s)ζK(s).

Our goal is to prove the equidistribution of the measure µt = |E(v, 1+it)|2dV (v),

where dV (v) = dx1dx2dy
y3 . We consider its inner product with various functions

spanning L2(X). We begin with inner products with Maass cusp forms φj .

Proposition 3.1. For any fixed φj,

lim
t→∞

∫

X

φjdµt = 0

Proof. Set

Jj(t) =
∫

X

φjdµt =
∫

X

φj(v)E(v, 1 + it)E(v, 1− it)
dx1dx2dy

y3
(3.3)
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with z = x1 + x2i. To investigate this we first consider

Ij(s) =
∫

X

φj(v)E(v, 1 + it)E(v, s)
dx1dx2dy

y3
. (3.4)

All of the above integrals converge since φj is a cusp form. We unfold the integral

(3.4) to get

Ij(s) =
∫ ∞

0

∫

FL

φj(v)E(v, 1 + it)ys dx1dx2dy

y3
. (3.5)

Denote the conjugate of v = z+yj ∈ H3 by v = z−yj. As is well-known in the two

dimensional case, the space of the Maass cusp forms is expressed as a direct sum

of spaces of even and odd cusp forms. Here even (resp. odd) cusp forms are ones

satisfying φj(1− v) = εφj(v) with ε = 1 (resp. −1). Since E(v, s) = E(1− v, s), it

follows that Ij(s) ≡ 0 if φj odd. So we may assume that φj is even. In this case

the Fourier development (2.1) is written as

φj(v) = y
∑

n∈O∗/∼
ρj(n)Kirj (2π|n|y) cos(2πi〈n, z〉), (3.6)

where 1 + r2
j = λj . Normalizing the coefficients by ρj(n) = ρj(1)λj(n), the multi-

plicative relations are satisfied by λj(n). These amount to

L(φj , s) :=
∑

n∈O∗/∼

λj(n)
N(n)s

=
∏

(p):prime ideal

(
1− λj(p)

N(p)s
+

1
N(p)2s

)−1

. (3.7)

By substituting (3.2) and (3.6) into (3.5) we have

Ij(s) =
∫ ∞

0

∫

FL


y

∑

n∈O∗/∼
ρj(n)Kirj (2π|n|y) cos(2π〈n, z〉)




(
y1+it + y1−it ξK(it)

ξK(1 + it)

+
2y

ξK(1 + it)

∑

m∈O∗/∼
|m|itσ−2it(m)e4πiRe(mωz)Kit(4π|m|ωy)




ys dx1dx2dy

y3
. (3.8)
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Now we have

∫

FL

cos(2πi〈nω, z〉)dv =
{

0 n ∈ O − {0}
1 n = 0

.

In the expansion of (3.8), we appeal to the formula cos x cos y = 1
2 (cos(x + y) +

cos(x− y)). Only the terms with n = m remain as follows:

Ij(s) =
2

ξK(1 + it)

∫ ∞

0

∑

n∈O∗/∼
|n|itσ−2it(n)Kit(2π|n|y)ρj(n)Kirj (2π|n|y)ys dy

y

=
2

ξK(1 + it)

∑

n∈O∗/∼

|n|itσ−2it(n)ρj(n)
|n|s

∫ ∞

0

Kit(2πy)Kirj (2πy)ys dy

y
.

An evaluation of the integral involving Bessel functions [GR] yields

Ij(s) =
2π−s

ξK(1 + it)
Γ( s+irj+it

2 )Γ( s+irj−it
2 )Γ( s−irj+it

2 )Γ( s−irj−it
2 )

Γ(s)
R(s)

with

R(s) =
∑

n∈O∗/∼

|n|itσ−2it(n)ρj(n)
|n|s .
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We compute R(s) as follows:

R(s) =
1

ρj(1)

∏

(p):prime ideal

∞∑

k=0

λj(pk)|p|iktσ−2it(pk)
|p|ks

=
1

ρj(1)

∏

(p)

∞∑

k=0

λj(pk)|p|ikt

|p|ks

k∑

l=0

|p|−2itl

=
1

ρj(1)

∏

(p)

∞∑

k=0

λj(pk)|p|ikt

|p|ks

1− |p|−2it(k+1)

1− |p|−2it

=
1

ρj(1)(1− |p|−2it)

∏

(p)

( ∞∑

k=0

λj(pk)|p|−k(s−it) − |p|−2it
∞∑

k=0

λj(pk)|p|−k(s+it)

)

=
1

ρj(1)(1− |p|−2it)
∏

(p)

(
1

1− λj(p)|p|−(s−it) + |p|−2(s−it)
− |p|−2it

1− λj(p)|p|−(s+it) + |p|−2(s+it)

)

=
1

ρj(1)
∏

(p)

1− |p|−2s

(1− λj(p)|p|−(s−it) + |p|−2(s−it))(1− λj(p)|p|−(s+it) + |p|−2(s+it))

=
1

ρj(1)
L(φj ,

s−it
2 )L(φj ,

s+it
2 )

ζK(s)
. (3.9)

Therefore

Jj(t) = Ij(1− it)

=
2π−1+it

ξK(1 + it)
Γ( 1+irj

2 )Γ( 1+irj−2it
2 )Γ(1−irj

2 )Γ( 1−irj−2it
2 )

Γ(1− it)
R(1− it).

(3.10)

By Stirling’s formula |Γ(σ + it)| ∼ e−πt/2|t|σ− 1
2 , we see

the gamma factors in (3.10) ¿ |t|−1 (3.11)

as t →∞. It is known that the Dedekind zeta function in (3.10) is estimated as

t−ε ¿ |ζK(1 + it)| ¿ tε. (3.12)
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Estimating the automorphic L-functions in (3.10) was recently done successfully by

Sarnak and Petridis [SP]. They proved there exists δ > 0 such that for any ε > 0,

L(φj ,
1
2

+ it) ¿j,ε |t|1−δ+ε (3.13)

as |t| → ∞. The estimates (3.11)-(3.13) yield

Jj(t) ¿ |t|−δ+ε. (3.14)

This implies Proposition 3.1. ¤

We now turn to inner products of µt with incomplete Eisenstein series. Let h(y)

be a rapidly decreasing function at 0 and ∞, that is h(y) = ON (yN ) as y →∞ or

0 and N ∈ Z. Let H(s) be its Mellin transform

H(s) =
∫ ∞

0

h(y)y−s dy

y
.

Clearly H(s) is entire in s and is of Schwartz class in t for each vertical line σ + it.

The inversion formula gives

h(y) =
1

2πi

∫

(σ)

H(s)ysds

for any σ ∈ R. For such an h we form the convergent series

Fh(v) =
∑

γ∈Γ∞\Γ
h(y(γv)) =

1
2πi

∫

(3)

H(s)E(v, s)ds,

which we call incomplete Eisenstein series.

Proposition 3.2. For incomplete Eisenstein series F (v), we have

∫

X

F (v)dµt(v) ∼ 2
ζK(2)

(∫

X

F (v)dV (v)
)

log t
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as t →∞.

Proof. Incomplete Eisenstein series decrease rapidly as y → ∞ and belong to

C∞(X). Hence

∫

X

Fh(v)dµt(v) =
∫

X

Fh(v)|E(v, 1 + it)|2 dzdy

y3

=
1

2πi

∫

X

∫

(3)

H(s)E(v, s)ds|E(v, 1 + it)|2 dzdy

y3

=
1

2πi

∫ ∞

0

∫

(3)

H(s)ysds

∫

FL

|E(v, 1 + it)|2 dzdy

y3

=
1

2πi

∫ ∞

0

∫

(3)

H(s)ysds

(∣∣∣∣y1+it + y1−it ξK(it)
ξK(1 + it)

∣∣∣∣
2

+
∣∣∣∣

2y

ξK(1 + it)

∣∣∣∣
2 ∑

n∈O∗/∼
|σ−2it(n)Kit(4π|n|ωy)|2


 dy

y3

= F1(t) + F2(t),

where we put

F1(t) =
1

2πi

∫ ∞

0

∫

(3)

H(s)ysds

∣∣∣∣y1+it + y1−it ξK(it)
ξK(1 + it)

∣∣∣∣
2

dy

y3
.

Since
∣∣∣ ξK(it)
ξK(1+it)

∣∣∣ = 1, we have

F1(t) = 2
∫ ∞

0

h(y)
dy

y
+ (a rapidly decreasing function of t). (3.15)

Whereas

F2(t) =
2

πi|ξK(1 + it)|2
∫

(3)

H(s)
∑

n∈O∗/∼

|σ−2it(n)|2
|n|s

∫ ∞

0

|Kit(4πωy)|2ys dy

y
ds.

(3.16)
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The series is computed as follows:

∑

n∈O∗/∼

|σa(n)|2
|n|s =

∏

(p): prime ideal

∞∑

k=0

σa(pk)σ−a(pk)
|p|ks

=
∏

(p)

∞∑

k=0

1
|p|ks

(
1− |p|a(k+1)

1− |p|a
)(

1− |p|−a(k+1)

1− |p|−a

)2

=
∏

(p)

1
(1− |p|a)(1− |p|−a)

∞∑

k=0

(
2|p|−ks − |p|(a−s)k+a + |p|(−a−s)k−a

)

=
∏

(p)

1
(1− |p|a)(1− |p|−a)

(
2

1− |p|−s
− |p|a

1− |p|a−s
− |p|−a

1− |p|−a−s

)

=
∏

(p)

1 + p−s

(1− p−s)(1− p−(s−a))(1− p−(s+a))

=
ζK( s

2 )2ζK( s−a
2 )ζK( s+a

2 )
ζK(s)

. (3.17)

The y-integral in (3.16) is evaluated in terms of the Γ function as before. We obtain

F2(t) =
2

πi|ξK(1 + it)|2
∫

(3)

H(s)
∑

n∈O∗/∼

|σ−2it(n)|2
|n|s

∫ ∞

0

|Kit(4πωy)|2ys dy

y
ds

=
2

πi|ξK(1 + it)|2
∫

(3)

H(s)ζK( s
2 )2|ζK( s

2 + it)Γ( s
2 + it)|2Γ( s

2 )2

(4πω)sζK(s)Γ(s)
ds

=
2

πi|ξK(1 + it)|2
∫

(3)

B(s)ds, (3.18)

where we put

B(s) =
H(s)ζK( s

2 )2|ζK( s
2 + it)Γ( s

2 + it)|2Γ( s
2 )2

(4πω)sζK(s)Γ(s)
. (3.19)

By Stirling’s formula to estimate the gamma factors and from the fact that H(σ+it)

is rapidly decreasing in t, we can shift the integral in (3.18) to Re(s) = 1:

F2(t) =
4Ress=2B(s)
|ξK(1 + it)|2 +

2
πi|ξK(1 + it)|2

∫

(1)

B(s)ds. (3.20)
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The second term in (3.20) is evaluated by Heath-Brown [H] as

ζK(
1
2

+ it) ¿ t
1
3+ε

for any fixed ε > 0. We find that

2
πi|ξK(1 + it)|2

∫

(1)

B(s)ds ¿ε t−
1
3+ε.

This corresponds to the bound (3.14).

Next we deal with the residue term in (3.20), which is more complicated. Write

B(s) as ζK( s
2 )2G(s) where G(s) is holomorphic at s = 2. Put

ζK(s/2) =
A−1

s− 2
+ A0 + O(s− 2) (s → 2).

In the expansion of

B(s) =
(

A−1

s− 2
+ A0 + O(s− 2)

)2 (
G(2) + G′(2)(s− 2) + O(s− 2)3

)
,

the coefficient of (s− 2)−1 gives the residue

Ress=2B(s) = G(2)A−1

(
2A0 + A−1

G′

G
(2)

)
.

A simple calculation gives

G(2) =
H(2)|ζK(1 + it)Γ(1 + it)|2Γ( 1

2 )2

(4πω)2ζK(2)
=

H(2)|ξK(1 + it)|2
4ζK(2)

and

G′

G
(2) =

H ′

H
(2) +

ζ ′K(1 + it)
2ζK(1 + it)

+
ζ ′K(1− it)
2ζK(1− it)

+
Γ′(1 + it)
2Γ(1 + it)

+
Γ′(1− it)
2Γ(1− it)

+ C

with C being independent of t. For the Weyl-Hadamard-De La Vallée Poussin

bound [T, (6.15.3)] and its generalization to Dirichlet L-functions by Landau, we

have

ζ ′K(1 + it)
ζK(1 + it)

¿ log t

log log t
.
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This together with Γ′
Γ (1 + it) ∼ log t gives

Ress=2B(s) =
H(2)|ξK(1 + it)|2

2ζK(2)
log t + O

(
log t

log log t

)
.

Finally the first term of (3.20) is evaluated as

4Ress=2B(s)
|ξK(1 + it)|2 =

2H(2)
ζK(2)

log t + O(1).

Taking into account that

H(2) =
∫ ∞

0

h(y)
dy

y3
=

∫

X

Fh(z)
dzdy

y3

we reach the conclusion. ¤

Proposition 3.3. Let F be a continuous function of compact support in X. Then
∫

X

F (v)dµt(v) ∼ 2
ζK(2)

(∫

X

F (v)dV (v)
)

log t

as t →∞.

Proof. The space of all incomplete Eisenstein series and cusp forms is dense in

the space of continuous functions vanishing in the cusp. For any ε > 0, we can

find G = G1 + G2 with G1 the finite sum of cusp forms and G2 in the space of

incomplete Eisenstein series, such that ‖G− F‖∞ < ε. The difference H = G− F

is sufficiently small and rapidly decreasing in the cusp. Namely, it is majorized in

terms of another incomplete Eisenstein series

H1(v) =
∑

γ∈Γ∞\Γ
h1(y(γv))

as

H1(v) ≥ |H(v)|

satisfying
∫

X

H1(v)dV (v) < C(K)ε

with some constant C(K) depending only on the field K. Hence the conclusion. ¤

Propositions 2.3 implies Theorem 1.1 by standard approximation arguments.
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